Trammg U|de

http://aka.ms/TGProgHTML5/files
http://aka.ms/TGProgHTML5/files

104

can also click the gray vertical bar (where the breakpoint is showing in Figure 3-12) to set a
breakpoint.

b WeblavaScriptTestsSolution - Microsoft Visual Studie.., Quick Launch (Ctrl+0) p - B x
EILE EDIT WIEWY PROJECT DEBUS TEAM TOOLS TEST MWWINDOWY HELP
B < IR B-ak 9 - P Internet Explarer ~ Debug - & _° h=l -
g‘ L default.html -
£ 1 =
= 2 Htest('nested functions', 1, function () { ,-
3 equal(areadfPizzaslice(18, 8), 31.888619, 'Expected 31.3@8619');
4 11
5
[
7 Elfuncticn areaOfPizzaSlice(diameter, slicesPerPizza) {
[] g return areaOfPizza(diameter) / slicesPerPizzafp
9
1@ § = function areaOfPizza(diameter) {
11 var radius = diameter / 2;
12 return 3.141592 * radius * radius;
13 ¥

FIGURE 3-12 Press F9 to set a breakpoint

Now that you have set a breakpoint, if you press F5 (Debug | Start Debugging) to run the
test, you should hit the breakpoint. When you hit the breakpoint, the program pointer is dis-
played in yellow on that line. Now that you're in break mode, you can examine the variables.

Examining variables

One of the easiest ways to examine variables when in break mode is just to use your mouse
cursor to point to the variable. This causes a ToolTip to display with the variable information,
as shown in Figure 3-13.

—Ifunction area0fPizzaSlice(diameter, slicesPerPizza) {

7
[+ 8 tetur‘n arealfPizza(diameter) / slicesPerPizza);
q

@ diameter 18 =

] |= functicn areaOfPizza(diameter) {

11 var radius = diameter / 2;

12 return 3.141592 * radius * radius;
13 }

14] [}

FIGURE 3-13 In break mode, pointing to a variable to get its information

In the figure, you can see that the diameter was pointed to, and the tooltip was displayed,
showing its value of 18. If you point to slicesPerPizza, you see a tooltip displaying the value
of 8.

Another way to explore the variables is to view the Locals window, which displays all
variables that are in scope, including the special this variable, which is the current object.

Getting started with JavaScript

Normally, when you are in break mode, you see the Locals window on the lower right of the
Visual Studio window. If the Locals window is not visible and you are in break mode, you can
display the Locals window by navigating to Debug | Windows | Locals. You should see the
Locals window, as shown in Figure 3-14.

Marne Walue

@ diameter 18

@ slicesPerPiza g
@ argurnents 1.1 Object, (Brgurnents)
@ areadfPiza function areaOfPizzaldiameter) { Object, (Function)
@ [Globals]
Locals Match

FIGURE 3-14 The Locals window displaying all variables that are in scope

As a program grows, the Locals window fills with variables that might not interest you, but
you might see several variables you want to keep watching. In Figure 3-14, the Watch tab is
in the lower-left corner. If you click this tab, you see the Watch window. This window enables
you to add the variables that interest you. You can click the empty line, type the name of the
variable, and press Enter, or, in the code window, you can highlight the variable (usually by
double-clicking it) and drag and drop it into the Watch window. Figure 3-15 shows the use of
the Watch window.

Watch

Mame Walue Type
@ diameter 18 MNumber
@ slicesPerPizza a MNumber
€3 radius ‘radius’ is undefined [¢]

Locals | Watch

FIGURE 3-15 Using the Watch window to add the variables that interest you

Notice in Figure 3-15 that the radius is listed as undefined. This is because the program
hasn't reached the nested function where radius is declared and set.

Stepping through the code

Now that you're in break mode, you can step through the code by pressing F11 (Debug |
Step Into), F10 (Debug | Step Over), or Shift+F11 (Debug | Step Out). These options are also
on the toolbar. The current line of code returns the area of the pizza slice if you press F10
because stepping over means that you want to execute all the code in the current statement
and then go back to break mode on the next statement.

By pressing F11, you step into the areaOfPizza function. When you're in the function, press
F11 again to set the radius. You should be able to point to the radius to see that the value

Lesson 2: Writing, testing, and debugging JavaScript

105

was set to 9 and, in the Locals window, radius is displaying a value of 9. The color is red, which
indicates that this value has changed since the last time you were in break mode.

If you swipe across 3.141592 * radius * radius and then right-click the selection, you can
add Watch, which adds this expression to the Watch window. You can also add Parallel Watch,
which, in a multithreaded application, displays the Watch expression with its value for each
thread that has a value. Figure 3-16 shows the Parallel Watch window, which is visible after
you add a parallel watch.

Filter by Boolean Expression O =

[Thﬁaad] @ 3141592 * radius ¥ radius <ddd Watch s

Parallel Watch 1 Call Stack lmmediate Window Cutput

FIGURE 3-16 The Parallel Watch window showing the value of the expression for each thread that has a
value

In Figure 3-16, the window is presented as a grid in which the first row contains the column
headings and each additional row represents a thread with a value. Each expression that's
added will add another column to the grid.

When right-clicking the expression, you can Pin To Source, which pins a tooltip on the
source window that shows the value of the expression, as shown in Figure 3-17. After pinning,
you can drag the tooltip to anywhere in the code editor, and the value will be at that location
until you click the X in the upper-left corner.

n-d WeblavaScriptTestsSolution (Debugging) - Microsoft Yisual Studio Express 2012 RC for Web
FILE EDIT WIEM¢ PROJECT DEBUG TEAM TOOLS TEST WWINDOMY HELP

N < S T L I - P Continue - Debug ﬁzﬁél -)(n(',(.‘.':_
qunitjs m default.html

1

2 Htest('nested functions', 1, function () {

3 equal(areaOfPizzaslice(18, 8), 31.888619, 'Expected 31.388619');

4 11

5

6

7 Efunction area0fPizzaslice(diameter, slicesPerPizza) {
® ‘ return area0fPizza(dianeter) / slicesPerpizzal

9

18 function areaOfPizza(diameter) {

11 var radius = diameter / 2; x
212 return 3.141592 * radius * radiusi @ 3141502 * radius * radius 254468052 %

13 } ¥

14 ¥

FIGURE 3-17 The Pin To Source option that pins a ToolTip to the code

You can click the chevron symbol (bottom symbol with double v) to add a comment to this
expression, too.

106 Getting started with JavaScript

When you're ready to run the application at full speed, you can press F5 (Debug |
Continue).

Lesson summary
= TDD provides a great way to write code and learn about code.
®m QUnit can be used to perform TDD with web applications.
m QUnit-Metro can be used to perform TDD with Windows 8 applications.

= NuGet is an open-source package management system for the .NET platform that
simplifies the addition of third-party libraries into your code.

= When creating tests, always create a failing test first, and then add code to make the
test pass.

m Always try to keep your JavaScript code separate from your HTML.

m For best performance, place the <script> elements at the bottom of the HTML docu-
ment, before the </body> tag.

®m You can set a breakpoint in your JavaScript by clicking the statement and pressing F9
(Debug | Toggle Breakpoint).

m You can step through code by pressing F11 (Debug | Step Into), F10 (Debug | Step
Over), or Shift+F11 (Debug | Step Out).

Lesson review

Answer the following questions to test your knowledge of the information in this lesson. You
can find the answers to these questions and explanations of why each answer choice is correct
or incorrect in the "Answers” section at the end of this chapter.

1. You are creating a new Windows 8 application, and you want to set up TDD for your
JavaScript code. Which testing framework will you use?

A. QUnit
B. QUnit-Metro
C. Microsoft Test
D. NUnit
2. What are the steps for TDD?

A. Write the passing test, write the code, run the test again to validate that it still
passes.

B. Write the failing test, write the code, run the test again to validate that it passes.

C. Write the code, write the test to validate that it passes, run the test again to vali-
date that it still passes.

D. Write the passing test, write the code, break the code, run the test again to vali-
date that it fails.

Lesson 2: Writing, testing, and debugging JavaScript

107

108

3. Where should your JavaScript code be placed?
A. Inthe <head> element of your HTML document.
B. Just before the </body> tag.

C. You should always place your JavaScript code in separate files, external to your
HTML document.

D. Inside the <body> element, at the top.

Lesson 3: Working with objects

In this chapter, you've seen a lot of JavaScript basics, but some elements haven't been dis-
cussed. You still need to know how to access existing objects and how to create and use an
array, which is a special JavaScript object. You also need to know how to be notified when
something changes on an object. Creating your own custom objects is covered in Chapter 6,
"Essential JavaScript and jQuery."

This lesson explains arrays, the document object model (DOM), and how you can access
the DOM by using JavaScript. The lesson goes on to describe event notifications, which
enable you to subscribe to DOM events.

After this lesson, you will be able to:

m Create and modify an array of items.

m Navigate the DOM by using JavaScript.
m Subscribe to DOM events.

Estimated lesson time: 60 minutes

Working with arrays

An array is a collection object that has a sequence of items you can access and modify. The
array is assigned to a variable, and you can access its items by using its indexer, which is
square brackets ([]). Because the collection of items is in one variable, you can easily pass the
array to a function. You can also loop through the items in the array as needed.

Creating and populating an array
There are three ways to create an array. It doesn’'t matter which method you choose, although
your choice typically will be based on the array implementation in the program:

m Inserting items with the indexer The array is created by using the new keyword,
which creates an instance of the Array object. After the array is created and assigned
to a variable, items are added to the array by using the index number, which is zero-
based. For inserting new items, the index number must be the size of the array.

Getting started with JavaScript

For example, after the array is created, its size is zero, so zero is used to insert the first
item. Using this method, items can be added anywhere in the program. Note that if
you use an index number that is higher than the quantity of items that currently exist,
you add empty items to the array. For example, if you currently have only one item

in the array but specify an index number of 2, you will add your item with an index
number of 2, and an empty item will be added at index number 1. The following is an
example of creating the array and adding items:

var pizzaParts = new Array(Q);

pizzaParts[0] = 'pepperoni';
pizzaParts[1] = 'onion';
pizzaParts[2] = 'bacon';

m Condensed array The array is created by using the new keyword, which creates an
instance of the Array object, and all items are passed into the Array object’s construc-
tor. The condensed method is convenient, but you need to know all items at the time
you create the array. The following is an example of creating the populated array:

var pizzaParts = new Array('pepperoni', 'onion', 'bacon');
m Literal array The array is created by supplying the item list, enclosed in square

brackets. This is very similar to the condensed array; it just requires less typing. The fol-
lowing is an example of the literal array:

var pizzaParts = ['pepperoni', 'onion', 'bacon'];

Accessing the array items

To access the items in the array, use the indexer. Remember that the array is zero-based, and
if you try using a number that's greater than the quantity of items in the array, a value of
undefined is returned. The following example retrieves the onion:

var secondItem = pizzaParts[1];

Modifying the array items

You also use the indexer when you want to modify the items in the array. If you try using a
number that's greater than the quantity of items in the array, no exception is thrown. Instead,
the item is added to the array, and the array size grows to the number you used plus one. The
following example modifies the onion by setting its value to cheese:

pizzaParts[1] = 'cheese';

Understanding array properties

Each piece of data objects can hold is called a property. Some properties are read-only,
whereas others are readable and writeable. The Array object has one property that you'll use
often, the length property. This property is read-only and returns the quantity of items in
the array. For example, an array with two items returns 2. The length property is useful when

Lesson 3: Working with objects

109

110

looping through the items in the array. The following example code demonstrates the length
property:

for(var i=0; i < pizzaParts.length; i++){
alert(pizzaParts[i]);
}

Using array methods

Objects can have their own functions; each object function is called a method. The Array
object has the following useful methods:

m concat Joins two or more arrays and returns a new array with all the items, as shown
in the following example:
var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];

var pizzaVegetableParts = ['pepper', 'onion'];
var pizzaParts = pizzaMeatParts.concat(pizzaVegetableParts);

m indexOf Locates the item in the array and returns its index, as shown in the following
example, in which the baconindex variable will be set to 2:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var baconIndex = pizzaMeatParts.indexO0f('bacon');

m join Creates a string from the items in the array. The items are comma-delimited by
default, but you can pass an alternate separator. The following assigns a string contain-
ing ‘pepperoni, ham, bacon’ to the meatParts variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var meatParts = pizzaMeatParts.join(Q);

m lastindexOf Searches from the end of the array for the last item in the array that
meets the search criteria and returns its index, as shown in the following example, in
which the lastHamIndex variable will be set to 3:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon', 'ham', 'prosciutto'];
var lastHamIndex = pizzaMeatParts.lastIndexOf('ham');

m pop Removes and returns the last element of the array. This reduces the length of
the array by one. The following example assigns ‘bacon’ to the last/tem variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var lastItem = pizzaMeatParts.pop(Q);

m push Adds anew item to the end of an array and returns the new length, as shown
in the following example, in which ‘prosciutto’ is added to the end of the array and 4 is
assigned to the newlLength variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var newLength = pizzaMeatParts.push('prosciutto');

Getting started with JavaScript

reverse Reverses the order of the items in an array and returns a reference (not
a new array) to the reversed array, so the original array is modified. The following
example reverses the order of the array:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon', 'prosciutto'];
pizzaMeatParts.reverse();

shift Removes and returns the first item in the array. If no items are in the array, the
return value is undefined. The following example removes ‘pepperoni’ from the array
and assigns it to the firstitem variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var firstItem = pizzaMeatParts.shift(Q);

slice Returns a new array that represents part of the existing array. The slice method
has two parameters: start and end. The start parameter is the index of the first item to
include in the result. The end parameter is the index of the item that you don't want
included in the result. In the following example, the mySlice variable will be assigned
‘ham’ and 'bacon’. Note that ‘meatball’ is not included in the result, and the original
array is not changed:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon', 'meatball', 'prosciutto'];
var mySlice = pizzaMeatParts.slice(1,3);

sort Sorts the items in an array and returns a reference to the array. The original
array is modified. The following example sorts the array. After sorting, pizzaMeatParts
will contain ‘bacon’, 'ham’, ‘'meatball’, ‘pepperoni’, ‘prosciutto”:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon', 'meatball', 'prosciutto'];
pizzaMeatParts.sort(Q);

splice Adds and removes items from an array and returns the removed items. The
original array is modified to contain the result. The splice method’s first parameter is
the starting index of where to start adding or deleting. The second parameter indi-
cates how many items to remove. If 0 is passed as the second parameter, no items are
removed. If the second parameter is larger than the quantity of items available for
removal, all items from the starting index to the end of the array are removed. After
the first two parameters, you can specify as many items as you want to add. The fol-
lowing example removes ‘ham’ and ‘bacon’ from the original array and assigns ‘ham’
and 'bacon’ to mySlice. In addition, 'spam’ is inserted in pizzaMeatParts, which results
in pizzaMeatParts containing ‘pepperoni’, 'spam’, ‘meatball’, ‘prosciutto’

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon', 'meatball', 'prosciutto'];
var mySlice = pizzaMeatParts.splice(1,2, 'spam');

toString All objects have a toString method. For the Array object, toString creates a
string from the items in the array. The items are comma-delimited, but if you want a

Lesson 3: Working with objects

111

112

different delimiter, you can use the join method and specify an alternate separator. The
following assigns a string containing ‘pepperoni,ham,bacon’ to the meatParts variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var meatParts = pizzaMeatParts.toString(Q);

= unshift Adds a new item to the beginning of an array and returns the new length, as
shown in the following example, in which ‘prosciutto’ is added to the beginning of the
array and 4 is assigned to the newlLength variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var newLength = pizzaMeatParts.unshift('prosciutto');

m valueOf All objects have a valueOf method. For the Array object, valueOf returns the
primitive values of the array as a comma-delimited string, as shown in the following
example, which assigns a string containing ‘pepperoni,ham,bacon’ to the meatParts
variable:

var pizzaMeatParts = ['pepperoni', 'ham', 'bacon'];
var meatParts = pizzaMeatParts.valueOf();

(Quick check

® You want to retrieve a new array that is part of an existing array. Which array
method should you use?

Quick check answer

m Use the slice method.

Accessing DOM objects

When building an application, the primary objects you must access are the objects that make
up the DOM, which represents the HTML document. You need to access the DOM to con-
trol the behavior of your HTML document and to be notified when something happens on
the page.

Navigating the DOM

The DOM represents a hierarchy of objects, forming a model of your HTML document. To
retrieve elements from the DOM, use the built-in document variable, which references the
DOM, and perform one of the search methods.

Some of the search methods return a single element, whereas others return an array of
elements. The methods that return an array return either a live NodelList or a static NodeList.
The live NodelList represents an array of elements that is continuously updated as the DOM
changes, whereas the static NodeList represents a snapshot of elements that doesn’t change
as the DOM changes. From a performance perspective, it takes longer to create the static

Getting started with JavaScript

Nodelist, so consider working with the search methods that return a live NodelList if you want
the best performance. It's important to understand this difference because it can affect your
choice of search method.

The following is a list of the DOM search methods with a short description and example:

getElementByld Returns a reference to the first object with specified id, as shown in

the following example, which retrieves a reference to the button with the id of btnSave:

var btn = document.getElementById('btnSave');

getElementsByTagName Returns a live NodeList, which is a special array of all ele-
ments with the specified tag name. The live NodelList automatically updates if you add,
delete, or modify elements. The following example returns an array of all images:

var images = document.getElementsByTagName('img');

getElementsByName Returns a live Nodelist of all elements with the specified
name. This works well with option buttons when all their options typically have the
same name. The following example retrieves an array of all elements with the name
pizzaSize:

var pizzaSizes = document.getElementsByName('pizzaSize');

getElementsByClass Not supported in Internet Explorer 8 and earlier. Returns a live
NodelList of all elements with the specified CSS class name. CSS classes are examined in
more detail in Chapter 4, "Getting started with CSS3.” This works well when you have
many elements, but you need to group them, possibly to make the elements visible or
hidden. The following example retrieves an array of all elements with the class name
pizzaPart:

var pizzaParts= document.getElementsByClass('pizzaPart');

querySelector Not supported in Internet Explorer 7 and earlier. Accepts a CSS
selector as its parameter. Because CSS is described in detail in Chapter 4, this example
is simplified. The querySelector method returns the first matched element if one-to-
many exist or null if there is no match. In addition to being supported on the docu-
ment object, the querySelector method exists on the Element object, so you can query
either the entire DOM or just an element’s content. In the following example, the
pound symbol (#) indicates a search for an id. This example returns a reference to the
button whose id is btnSave:

var btn = document.querySelector('#btnSave');

querySelectorAll Not supported on Internet Explorer 7 and earlier. Accepts a CSS
selector as its parameter. Again, because CSS is described in detail in Chapter 4, this
example is simplified. The querySelectorAll method returns a static NodeList of all
elements that match or an empty array if there is no match. In addition to being
supported on the document object, the querySelector method exists on the Element
object, so you can query either the entire DOM or just an element’s content. In the

Lesson 3: Working with objects

113

http://contoso.com

http://localhost:8080/addition?x=5&y=10

http://localhost:8080

https://tools.google.com/dlpage/webmmf/
https://tools.google.com/dlpage/webmmf/

http://code.google.com/p/svg-edit/

Training Guide: Programming in HTML5 with
JavaScript and CSS3 and Exam 70-480

This book is designed to help build and advance your job-role expertise. In addition, it covers some
of the topics and skills related to Microsoft Certification Exam 70-480 and might be useful as a

complementary study resource.

Note: This book is not designed to cover all exam topics; see the following chart. If you are
preparing for the exam, use additional materials to help bolster your readiness, in conjunction with

real-world experience.

EXAM OBJECTIVES/SKILLS

SEE TOPIC-RELATED COVERAGE HERE

IMPLEMENT AND MANIPULATE DOCUMENT STRUCTURES AND OBJECTS

Create the document structure.

Write code that interacts with Ul controls.

Apply styling to HTML elements programmatically.
Implement HTML5 APIs.

Establish the scope of objects and variables.
Create and implement objects and methods.

IMPLEMENT PROGRAM FLOW

Chapters 2 and 5

Chapters 3, 7,11, 12, and 13
Chapter 4

Chapters 10, 14, 15, and 16
Chapters 3 and 6

Chapter 6

Implement program flow.
Raise and handle an event.
Implement exception handling.

Implement a callback.

Chapter 3 and 6
Chapter 3 and 6
Chapter 3

Chapter 3, 6, 8, and 9

Create a web worker process. Chapter 9
ACCESS AND SECURE DATA

Validate user input by using HTML5 elements. Chapter 7
Validate user input by using JavaScript. Chapter 7
Consume data. Chapter 8

Serialize, deserialize, and transmit data.

Chapter 7

USE CSS3 IN APPLICATIONS

Style HTML text properties. Chapter 4
Style HTML box properties. Chapter 4
Create a flexible content layout. Chapter 4
Create an animated and adaptive Ul. Chapter 4
Find elements by using CSS selectors and jQuery. Chapter 4 and 6
Structure a CSS file by using CSS selectors. Chapter 4

For complete information about Exam 70-480, visit http://www.microsoft.com/learning/en/us
/exam.aspx?ID=70-480. In addition, for more information about Microsoft certifications, visit
http://www.microsoft.com/learning.

What do

you think of
this book?

We want to hear from you!

To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

Microsoft
Press

	Cover
	Copyright Page

	Contents at a glance
	Table of Contents
	Introduction
	Backward compatibility and cross-browser compatibility
	System requirements
	Hardware requirements
	Software requirements
	Practice exercises
	Acknowledgments
	Errata and book support
	We want to hear from you
	Stay in touch

	Chapter 1: Getting started with Visual Studio 2012 and Blend for Visual Studio 2012
	Before you begin
	Lesson 1: Visual Studio 2012
	Visual Studio 2012 editions
	Visual Studio 2012 support for HTML5
	CSS3 support
	JavaScript support
	Exploring Visual Studio Express 2012 for Windows 8
	Exploring Visual Studio Express 2012 for Web
	Lesson summary
	Lesson review

	Lesson 2: Blend for Visual Studio 2012
	Exploring Blend
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Hello World with Visual Studio Express 2012 for Windows 8
	Exercise 2: Hello World with Visual Studio Express 2012 for Web
	Exercise 3: Hello World with Blend

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 2: Getting started with HTML5
	Before you begin
	Lesson 1: Introducing HTML5
	Understanding HTML, XHTML, and HTML5
	Introducing semantic markup
	Working with elements
	Creating an HTML document
	Lesson summary
	Lesson review

	Lesson 2: Embedding content
	Embedding HTML by using inline frames
	Working with hyperlinks
	Adding images to your HTML document
	Embedding plug-in content
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a simple website by using Visual Studio Express for Web
	Exercise 2: Create additional pages
	Exercise 3: Embedding Content

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 3: Getting started with JavaScript
	Before you begin
	Lesson 1: Introducing JavaScript
	Understanding JavaScript
	Understanding the role of data
	Using statements
	Working with functions
	Scoping variables
	Nesting functions and nested local variable scoping
	Converting to a different type
	Conditional programming
	Implementing code loops
	Handling errors
	Lesson summary
	Lesson review

	Lesson 2: Writing, testing, and debugging JavaScript
	Hello World from JavaScript
	Using the script tag
	Handling browsers that don’t support JavaScript
	Inline JavaScript vs. external JavaScript files
	Placing your script elements
	Using the Visual Studio .NET JavaScript debugger
	Lesson summary
	Lesson review

	Lesson 3: Working with objects
	Working with arrays
	Accessing DOM objects
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a calculator webpage
	Exercise 2: Add the QUnit testing framework

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 4: Getting started with CSS3
	Before you begin
	Lesson 1: Introducing CSS3
	Defining and applying a style
	Adding comments within a style sheet
	Creating an inline style
	Creating an embedded style
	Creating an external style sheet
	Lesson summary
	Lesson review

	Lesson 2: Understanding selectors, specificity, and cascading
	Defining selectors
	Understanding the browser’s built-in styles
	Extending browser styles with user styles
	Working with important styles
	How do styles cascade?
	Using specificity
	Understanding inheritance
	Lesson summary
	Lesson review

	Lesson 3: Working with CSS properties
	Working with CSS colors
	Working with text
	Working with the CSS box model
	Setting the border, padding, and margin properties
	Positioning <div> elements
	Using the float property
	Using the clear property
	Using the box-sizing property
	Centering content in the browser window
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Add a style sheet to the calculator project
	Exercise 2: Clean up the web calculator

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 5: More HTML5
	Before you begin
	Lesson 1: Thinking HTML5 semantics
	Why semantic markup?
	Browser support for HTML5
	Creating semantic HTML5 documents
	Creating an HTML5 layout container
	Controlling format by using the <div> element
	Adding thematic breaks
	Annotating content
	Working with lists
	Lesson summary
	Lesson review

	Lesson 2: Working with tables
	Table misuse
	Creating a basic table
	Adding header cells
	Styling the table headers
	Declaring the header, footer, and table body
	Creating irregular tables
	Adding a caption to a table
	Styling columns
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Add a page layout to the calculator project
	Exercise 2: Add styles to the calculator layout
	Exercise 3: Cleaning up the web calculator

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 6: Essential JavaScript and jQuery
	Before you begin
	Lesson 1: Creating JavaScript objects
	Using object-oriented terminology
	Understanding the JavaScript object-oriented caveat
	Using the JavaScript object literal pattern
	Creating dynamic objects by using the factory pattern
	Creating a class
	Using the prototype property
	Debating the prototype/private compromise
	Implementing namespaces
	Implementing inheritance
	Lesson summary
	Lesson review

	Lesson 2: Working with jQuery
	Introducing jQuery
	Getting started with jQuery
	Using jQuery
	Enabling JavaScript and jQuery IntelliSense
	Creating a jQuery wrapper for a DOM element reference
	Adding event listeners
	Triggering event handlers
	Initializing code when the browser is ready
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a calculator object

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 7: Working with forms
	Before you begin
	Lesson 1: Understanding forms
	Understanding web communications
	Submitting form data to the web server
	Sending data when submitting a form
	Using the <label> element
	Specifying the parent forms
	Triggering the form submission
	Serializing the form
	Using the autofocus attribute
	Using data submission constraints
	Using POST or GET
	Lesson summary
	Lesson review

	Lesson 2: Form validation
	Required validation
	Validating URL input
	Validating numbers and ranges
	Styling the validations
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a Contact Us form
	Exercise 2: Add validation to the Contact Us form

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 8: Websites and services
	Before you begin
	Lesson 1: Getting started with Node.js
	Installing Node.js
	Creating Hello World from Node.js
	Creating a Node.js module
	Creating a Node.js package
	Fast forward to express
	Starting with express
	Lesson summary
	Lesson review

	Lesson 2: Working with web services
	Introducing web services
	Creating a RESTful web service by using Node.js
	Using AJAX to call a web service
	Cross-origin resource sharing
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a website to receive data
	Exercise 2: Create a web service to receive data

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 9: Asynchronous operations
	Before you begin
	Lesson 1: Asynchronous operations using jQuery and WinJS
	Using a promise object
	Creating jQuery promise objects by using $.Deferred()
	Handling failure
	Handling completion cleanup
	Subscribing to a completed promise object
	Chaining promises by using the pipe method
	Parallel execution using $.when().then()
	Updating progress
	Conditional asynchronous calls
	Lesson summary
	Lesson review

	Lesson 2: Working with web workers
	Web worker details
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Implement asynchronous code execution

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 10: WebSocket communications
	Before you begin
	Lesson 1: Communicating by using WebSocket
	Understanding the WebSocket protocol
	Defining the WebSocket API
	Implementing the WebSocket object
	Dealing with timeouts
	Handling connection disconnects
	Dealing with web farms
	Using WebSocket libraries
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a chat server
	Exercise 2: Create the chat client

	Suggested practice exercises
	Answers
	Lesson 1

	Chapter 11: HTML5 supports multimedia
	Before you begin
	Lesson 1: Playing video
	Video formats
	Implementing the <video> element
	Setting the source
	Configuring the <video> element
	Accessing tracks
	Lesson summary
	Lesson review

	Lesson 2: Playing audio
	Audio formats
	The <audio> element
	Setting the source
	Configuring the <audio> element
	Lesson summary
	Lesson review

	Lesson 3: Using the HTMLMediaElement object
	Understanding the HTMLMediaElement methods
	Using HTMLMediaElement properties
	Subscribing to HTMLMediaElement events
	Using media control
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a webpage that displays video

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 12: Drawing with HTML5
	Before you begin
	Lesson 1: Drawing by using the <canvas> element
	The <canvas> element reference
	CanvasRenderingContext2D context object reference
	Implementing the canvas
	Drawing rectangles
	Configuring the drawing state
	Saving and restoring the drawing state
	Drawing by using paths
	Drawing text
	Drawing with images
	Lesson summary
	Lesson review

	Lesson 2: Using scalable vector graphics
	Using the <svg> element
	Displaying SVG files by using the element
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a webpage by using a canvas

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 13: Drag and drop
	Before you begin
	Lesson 1: Dragging and dropping
	Dragging
	Understanding drag events
	Dropping
	Using the DataTransfer object
	Lesson summary
	Lesson review

	Lesson 2: Dragging and dropping files
	Using the FileList and File objects
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a number scramble game
	Exercise 2: Add drag and drop to the game
	Exercise 3: Add scramble and winner check

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 14: Making your HTML
location-aware
	Before you begin
	Lesson 1: Basic positioning
	Geolocation object reference
	Retrieving the current position
	Handling errors
	Addressing privacy
	Specifying options
	Lesson summary
	Lesson review

	Lesson 2: Monitored positioning
	Where are you now? How about now?
	Calculating distance between samples
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Map your current positions

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 15: Local data with web storage
	Before you begin
	Lesson 1: Introducing web storage
	Understanding cookies
	Using the jQuery cookie plug-in
	Working with cookie limitations
	Alternatives to cookies prior to HTML5
	Understanding HTML5 storage
	Exploring localStorage
	Using short-term persistence with sessionStorage
	Anticipating potential performance pitfalls
	Lesson summary
	Lesson review

	Lesson 2: Handling storage events
	Sending notifications only to other windows
	Using the StorageEvent object reference
	Subscribing to events
	Using events with sessionStorage
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a contact book by using localStorage

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2

	Chapter 16: Offline web applications
	Before you begin
	Lesson 1: Working with Web SQL
	Considering the questionable longevity of Web SQL
	Creating and opening the database
	Performing schema updates
	Using transactions
	Lesson summary
	Lesson review

	Lesson 2: Working with IndexedDB
	Using browser-specific code
	Creating and opening the database
	Using object stores
	Using transactions
	Inserting a new record
	Updating an existing record
	Deleting a record
	Retrieving a record
	Understanding cursors
	Dropping a database
	Lesson summary
	Lesson review

	Lesson 3: Working with the FileSystem API
	Assessing browser support
	Opening the file system
	Creating and opening a file
	Writing to a file
	Reading a file
	Deleting a file
	Creating and opening a directory
	Writing a file to a directory
	Deleting a directory
	Lesson summary
	Lesson review

	Lesson 4: Working with the offline application HTTP cache
	Browser support
	The cache manifest file
	Updating the cache
	Understanding events
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Modify a contact book to use IndexedDB

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Index
	About the author
	Objectives mapping
	Survey Page

